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We study quantum coherence of elastically scattered lattice fermions. We calculate vertex corrections to the
electrical conductivity of electrons scattered either on thermally equilibrated or statically distributed random
impurities. We demonstrate that the sign of the vertex corrections to the Drude conductivity is in both cases
negative. Quantum coherence due to elastic back scatterings always leads to diminution of diffusion.
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I. INTRODUCTION

It is very difficult to describe full electron correlations due
to a number of complex phenomena related to the quantum
character of the electron. It is hence appropriate to approach
the full description of electron correlations iteratively in sev-
eral stages. The first one is the static mean-field approxima-
tion of the Hartree type. Such a mean-field theory completely
neglects both charge and spin fluctuations and reduces the
interacting system to a Fermi gas with renormalized, self-
consistently determined, densities. Such a simplification may
deliver reliable results only for macroscopic static quantities
in the weak-coupling limit. Electron correlations in this ap-
proximation have no impact on dynamical and transport
properties.

The next level in a comprehensive modeling of strong
electron correlations are models and approximations allow-
ing for charge fluctuations. In these models the spin of elec-
trons does not play a significant role and electrons are sub-
jected only to a potential scattering. It means that electrons
are only scattered on fluctuations of the atomic potential in
the lattice. The potential fluctuations are caused by impuri-
ties that may be distributed in the crystal either regularly or
randomly. The paradigm for the former situation is the
Falicov-Kimball model1 �FKM� and for the latter the disor-
dered Anderson model �DAM�.2 Unlike the static mean-field
approximations, the models with a potential scattering lead
to quantum dynamical effects and are applicable to the entire
range of the interaction strength �variance of the potential
fluctuations�. The potential scattering does consequently af-
fect spectral and transport properties of the system.

A common feature of the models with potential scat-
terings only is that energy is conserved during scattering
events and need not be treated as a dynamical variable. Each
energy, however, is renormalized in a different manner and
hence the energy �frequency� is used as an external label.
Conservation of energy in scattering events is a significant
simplification in the description of electron correlations. It
allows for an exact solution in the limit of infinite spatial
dimensions �dynamical mean-field theory�, where the effect
of strong potential fluctuations may be studied without un-
controlled approximations.3–6

The two models, FKM and DAM, are standardly used for
different purposes. The former one is aimed at a description
of quantum fluctuations caused by electron correlations in
thermally equilibrated states while the latter one was intro-
duced so that a response of a disordered electron gas to
weak-electromagnetic nonequilibrium perturbations can be

estimated in a controlled way. Both the models have served
well their original purposes. The Falicov-Kimball model has
been successfully applied to a simplified description of
correlation-induced metal-insulator7,8 and valence-change9

transitions in rare-earth compounds or atoms in optical
lattices.10,11 The disordered Anderson model has been used to
describe the spectral and transport properties of metallic
alloys12 and vanishing of diffusion, called Anderson
localization.13 There have been efforts to describe the com-
bined effect of electron correlations and randomness in the
disordered Falicov-Kimball model6 or Anderson localization
in FKM.14 Only a few attempts have, however, been made in
the calculation of the response of FKM to nonequilibrium
perturbations beyond the mean-field approach.15 In particu-
lar, it is little known about the electrical conductivity of
FKM beyond the mean-field, Drude contribution.16

It is the aim of this paper to fill up this gap and to propose
a systematic way how to calculate vertex corrections to the
Drude �mean-field� electrical conductivity in models with
elastic scatterings only, that is, FKM, DAM, or a disordered
FKM. The method we use is an expansion around the mean-
field solution obtained from the asymptotic limit to high spa-
tial dimensions. We calculate the leading-order vertex cor-
rection in high spatial dimensions being of order 1 /d2 while
the Drude conductivity is of order 1 /d. We demonstrate that
the vertex corrections have a universal behavior for all mod-
els of elastically scattered electrons and are always negative,
independent of whether they are caused by an external ran-
dom potential �quenched randomness� or by static, thermally
equilibrated electron correlations �annealed randomness�.

II. ELECTRICAL CONDUCTIVITY OF ELASTICALLY
SCATTERED ELECTRONS

Elastic scatterings of electrons are caused by either inter-
nal or external fluctuations of atomic potentials of frozen
ions forming a crystalline lattice. That is, interactions of
electrons of the same sort are excluded in models with elastic
scatterings. They are actually forbidden in spinless models
with locally interacting fermions. These models hence con-
tain either more than one type of electrons or an externally
governed distribution of atomic potentials. We consider only
the elementary version of such models and take into account
only two types of electrons, extended and localized ones. We
further assume homogeneity in the distribution of the local-
ized electrons and hence the noninteracting part of the
Hamiltonian describing such a situation reads
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Ĥ0 = �
k

��k�c†�k�c�k� + Ef�
i

f i
†f i. �1a�

We are interested in dynamical properties of the delocalized
electrons induced by fluctuations of the atomic potential the
extended electrons feel. To this purpose we introduce an in-
teracting term

ĤI = �
i

�Vi + Ufi
†f i�ci

†ci, �1b�

where ci=N−1�kc�k�exp�−ik ·Ri�. We denoted Vi the atomic
level of the ion situated in the elementary cell centered
around the lattice vector Ri and U is the interaction strength
between the extended and localized electrons. We generally
assume that the atomic potential Vi is a random variable with
a static site-independent probability distribution of its values

determined externally. If U=0 the full Hamiltonian Ĥ= Ĥ0

+ ĤI is that of the Anderson model with disordered electrons
and if Vi=0, the full Hamiltonian describes the Falicov-
Kimball model. We hence see that the most general elemen-
tary Hamiltonian for elastically scattered electrons is just a
disordered FKM. Actually, both the contributions to the in-
teracting Hamiltonian from Eq. �1b� introduce randomness
into the distribution of atomic potentials the extended elec-
trons feel. Potential Vi represents a static �quenched� ran-
domness and the interaction U a dynamical �annealed� one.
Both contributions can be treated on the same footing.

We are not interested in this paper in equilibrium thermo-
dynamic properties of FKM but rather in its dynamical be-
havior and particularly in the static, optical conductivity. The
electrical conductivity, although static, is nevertheless a dy-
namical property since we need at least two different ener-
gies �small imaginary parts� to determine it. The Kubo for-
mula for the diagonal part of the electrical conductivity in
models with only elastically scattered electrons can be writ-
ten as17

��� = −
e2

N2 �
kk�

v��k�v��k���
−�

� d�

2�
	df���

d�
�Gkk�

AR ��,�;0�

− Gkk�
AA ��,�;0�� +

1

2
f���

�

��
�Gkk�

RR ��,�;0�

− Gkk�
AA ��,�;0��


= −
e2

N2 �
kk�

v��k�v��k���
−�

� d�

2�

df���
d�

�Gkk�
AR ��,�;0�

− RGkk�
RR ��,�;0�� , �2�

where v��k�=���k� /�k� is the group velocity in the direction
� and the averaged �translationally invariant� two-particle
Green’s functions are defined as

Gkk�
AR ��,��;q� = Gkk�

�2� �� − i0+,�� + i0+;q� ,

Gkk�
RR ��,��;q� = Gkk�

�2� �� + i0+,�� + i0+;q� .

We denoted �=E−� the energy measured from the Fermi
level and f�E�=1 / �1+e	�E−��� is the Fermi function. See Fig.
1 for the way the variables in the two-particle Green’s func-
tion are used in this paper. We utilized integration per parts
to derive the second equality in Eq. �2�. We use throughout
the paper symbols R and I for the real and imaginary parts
of complex quantities.

The expression for the electrical conductivity simplifies if
we resort to zero temperature. Then the integrals over fre-
quencies can be performed explicitly and we obtain a simple
formula

��� =
e2

2�N2 �
kk�

v��k�v��k���Gkk�
AR − RGkk�

RR � �3�

with the values of the two-particle Green’s functions at the
Fermi energy. We used an abbreviation Gkk�

AR =Gkk�
AR �0,0 ;0�.

The two-particle Green’s function G�2� carries information
on both the uncorrelated and correlated motion of two elec-
trons. Only the latter one is the genuine two-particle quantity.
It is our task to identify this contribution to the electrical
conductivity. To do so, we introduce the two-particle vertex

 defined from an equation

Gkk�
AR = Gk

AGk
R���k − k�� + 
kk�

AR Gk�
A Gk�

R � , �4�

where we again used a notation Gk
R=Gk

R�0�. With the aid of
the vertex function we can decompose the conductivity ten-
sor into two parts

��� = ���
�0� + ����, �5�

where

���
�0� =

e2

�N
�
k

�v��k��2�IGR�k��2 �6�

is the standard one-electron or Drude conductivity at zero
temperature. The genuine two-particle contribution is called
a vertex correction and is proportional to the appropriate ma-
trix element of the two-particle vertex that at zero tempera-
ture reads

���� =
e2

2�N2 �
kk�

v��k�v��k����Gk
R�2�
kk�

AR �Gk�
R �2

− R��Gk
R�2�
kk�

RR �Gk�
R �2�� . �7�

It is not the full two-particle vertex 
 that is important for the

�

G(2)

k’, ω′

k, ω

k’ + q, ω′

k + q, ω

FIG. 1. Translationally invariant �averaged� two-particle
Green’s function in momentum space in the notation used in the
Kubo formula for electrical conductivity.
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electrical conductivity but only its odd part �
. That is, only
the part of the vertex function being on bipartite lattices an
odd function in fermionic momenta k and k�, contributes to
the electrical conductivity.

III. EQUILIBRIUM MEAN-FIELD THERMODYNAMICS

The Kubo formula for the electrical conductivity, Eq. �2�,
was derived within the linear-response theory and hence the
Green’s functions entering this formula are the equilibrium
ones. To estimate quantitatively the vertex corrections to the
electrical conductivity we need to know the equilibrium ther-
modynamics of FKM. To reduce the impact of uncontrolled
approximations we should at best know the exact equilib-
rium grand potential. An exact solution to FKM is known in
the limit of infinite spatial dimensions �mean-field limit� with
which we start up. The equilibrium thermodynamics of the
disordered FKM in d=� was analyzed in Ref. 6. The func-
tional of the averaged grand potential was found to be rep-
resented via a set of complex variational parameters Gn and

n, where the index n corresponds to the nth fermionic Mat-
subara frequency

	��
av = − �
n=−�

� 	�
−�

�

dE��E�ln�i�n + � − E − 
n�

+ �ln�1 + Gn�
n − V��
av

− �ln�1 + exp�	�� − Ef − EV���
av. �8�

Symbol � 
av stands for averaging over the distribution of the
random potential Vi. The shift of the f-electron atomic level
EV is determined via the same complex numbers Gn and 
n

EV = − T �
n=−�

�

ln�1 −
UGn

1 + Gn�
n − V�� �9�

and depends on the configuration of the random atomic po-
tential V.

The equilibrium thermodynamics is obtained as a station-
arity point with respect to small variations in complex num-
bers 
n and Gn of the averaged grand potential ��
av from
Eq. �8�. Vanishing of variations in the former and the latter
parameters lead to a couple of equations for each Matsubara
frequency i�n

Gn = �
−�

� d�����
i�n + � − � − 
n

, �10a�

1 = � 1 − f�Ef + EV�
1 + Gn�
n − V�

+
f�Ef + EV�

1 + Gn�
n − V − U��av
. �10b�

The first equation states that in equilibrium Gn is the local
element of the one-electron thermal Green’s function with a
self-energy 
n. The second equation determines the value of
the equilibrium self-energy. These equations of thermal equi-
librium must be completed with an equation determining the
chemical potential � from the total electron density n. This
equation then is

n = �f�Ef + EV�
av + �
n=−�

�

Gnei�n0+
= �f�Ef + EV�
av

− �
−�

� d�

�
f���IGR�� − 
R���� , �11�

where GR�z�=N−1�kGR�k ,z�. Equations �9�, �10a�, �10b�,
and �11� fully determine the equilibrium thermodynamics for
a given temperature T and a total particle density n.

Only one-particle equilibrium functions can be directly
calculated from the grand potential ��
av. To derive higher-
order correlation functions we have to slightly perturb equi-
librium and look at the corresponding response functions.
For the electrical conductivity we need to know two-particle
vertex 
. The only consistent way to derive a two-particle
vertex within the mean-field theory is to keep the nonequi-
librium perturbation local.18 The resulting vertex remains lo-
cal and is only frequency �energy� dependent.

The equilibrium two-particle vertex has generally three
independent �Matsubara� frequencies. In the case of FKM
investigated here, the resulting two-particle vertex can have
maximally two independent frequencies. The two frequen-
cies can, however, be placed in two different ways. The full
local two-particle vertex for FKM can be represented as


mn,kl
MF = �m,l�n,k�m,n + �m,n�k,l�m,k. �12�

The two contributions to the full vertex correspond to two
ways the electron lines go through the vertex. The electron
line entering into the vertex at the upper left corner goes out
either via the upper right corner �vertex �� or via the lower
left corner �vertex ��. See Fig. 2 for a graphical representa-
tion and notation used in Eq. �12�. Due to energy conserva-
tion in this model the incoming and outgoing frequencies
must equal. Notice that the two vertices � and � never mix
up and are completely detached in the solution. The former
vertex is relevant for the transport while the latter one for the
thermodynamics. It is hence sufficient to take into account
only vertex � for the calculation of the electrical conductiv-
ity.

We can represent vertex � via a local Bethe-Salpeter
equation with a local irreducible vertex �m,n. We have


m,n =
�m,n

1 − �m,nGmGn
. �13�

Charge conservation leads to a generalized Ward identity that
matches a nonequilibrium variation in the self-energy �
m,n
with the equilibrium irreducible vertex �m,n

�

Γ

n

m

k

l

= δm,lδn,k

�

γ

n

m

n

m

+ δm,nδk,l

�

ϕ

m

m

k

k

FIG. 2. Graphical representation of Eq. �12�. The dashed lines
within the boxes indicate charge propagation from the incoming to
the corresponding outgoing line.
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�m,n =
�
m,n

�Gm,n
=

1

GmGn
�1 − �m,n

−1 � , �14�

where we abbreviated

�m,n = � 1 − f�Ef + EV�
�1 + Gm�
m − V���1 + Gn�
n − V��

+
f�Ef + EV�

�1 + Gm�
m − V − U���1 + Gn�
n − V − U���av
.

�15�

The latter representation was derived with the aid of station-
arity equations, Eqs. �10a� and �10b�.

We have derived all the necessary equilibrium quantities
needed for the calculation of the electrical conductivity. We
must, however, go beyond the local, mean-field limit in order
to calculate transport properties. That is, we have to perturb
the equilibrium with time-dependent nonlocal excitations. To
do it in a controlled manner we use a perturbation expansion
around a mean field. This can be consistently achieved
within an asymptotic expansion in high spatial dimensions.

IV. EXPANSION AROUND MEAN FIELD—VERTEX
CORRECTIONS TO THE ELECTRICAL CONDUCTIVITY

An asymptotic expansion around a mean-field solution in
d=� for noninteracting disordered electrons was recently de-
rived by one of us in Ref. 19. The only ingredients of such an
expansion are the local mean-field vertex � and the nonlocal
one-electron propagator. The relevance and applicability of
this expansion goes beyond the model of disordered elec-
trons. It can be applied to any model where energy is con-
served in scattering events �elastic scatterings� and where
only spatial fluctuations matter. The disordered FKM studied
here falls into this category and we can hence use the expan-
sion concept of Ref. 19 for it. It is a considerable advantage
to expand around a mean-field solution since all the effects
of scatterings on impurities are included already in the local
vertex �. The variance of the potential fluctuations is not a
small parameter and the expansion terms do not depend on
whether the scatterings are due to thermally equilibrated or
randomly distributed static impurities, that is, whether the
disorder is annealed or quenched.

We construct the expansion around a mean field as an
asymptotic series on a hypercubic lattice in high spatial di-
mensions. The expansion parameter is the off-diagonal one-
electron propagator from the mean-field theory. We define

Ḡ�k,�� =
1

� − ��k�
−� d�����

� − �
, �16�

where we denoted �=z−
�z� and the local self-energy 
�z�
is that of the mean-field solution. The off-diagonal two-
particle bubble is a convolution of the off-diagonal one-
electron propagators. We hence define

�̄��,��;q� =
1

N
�
k

Ḡ�k,��Ḡ�k + q,��� . �17�

The frequency indices are external parameters and we sup-
press them when they are not necessary to specify a particu-
lar type of the one- or two-electron propagators.

The asymptotic limit of the full two-particle vertex in
high spatial dimensions contains beyond the local mean-field
vertex � also nonlocal contributions from the electron-hole
and electron-electron ladders.19 It can be represented as fol-
lows:


kk��q� = �	1 + �� �̄�q�
1 − ��̄�q�

+
�̄�Q�

1 − ��̄�Q��
 , �18�

where we denoted Q=q+k+k� the momentum conserved in
the electron-electron channel. Notice that the contribution
from the electron-hole channel with �̄�q� is part of the two-
particle vertex from the coherent potential approximation
�CPA� and can be derived from a Velický-Ward identity.20

The two-particle vertex from CPA does not carry the full 1 /d
correction to the local vertex and moreover it is not electron-
hole symmetric on the two-particle level.19 A consistent ex-
tension of the local mean-field two-particle vertex must con-
tain both nonlocal contributions from the electron-hole and
the electron-electron channels as given in Eq. �18�.

The contribution from multiple scatterings in the electron-
electron channel to the asymptotic two-particle vertex is im-
portant, in particular, in the calculation of the vertex correc-
tions to the mean-field electrical conductivity. The CPA
vertex, as notoriously known, does not generate vertex cor-
rections, unless we introduce odd dispersion relations in mul-
tiorbital models. It is only the second term in the parentheses
on the right-hand side of Eq. �18� that contributes to the
averaged conductivity and the we can identify

�
kk��q� = �2 �̄�k + k� + q�
1 − ��̄�k + k� + q�

�19�

from the formula for the vertex corrections to the electrical
conductivity, Eq. �7�. Inserting representation from Eq. �19�
into Eq. �7� we obtain

����
MF =

e2

2�N2 �
kk�
	��RA�2�Gk

R�2
v��k��̄RA�k + k��v��k��

1 − �RA�̄RA�k + k��
�Gk�

R �2 − R���RR�2�Gk
R�2v��k��̄RR�k + k��v��k��

1 − �RR�̄RR�k + k��
�Gk�

R �2�
 . �20�

It is a general formula for the leading-order corrections to the
mean-field �Drude� conductivity and can be applied in any

dimension. Vertex �
 contains the so-called Cooper pole
being the image of the diffusion pole contained in the CPA
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vertex after an appropriate electron-hole transformation. The
Cooper pole is responsible for the so-called weak-
localization corrections in the Anderson model of disordered
electrons.21 These corrections are here identical with those
determined by Eq. �20�. They are negative and diverge in
spatial dimensions d�2. The mean-field corrections to the
electrical conductivity from Eq. �20� can effectively be ap-
plied only in dimensions d�3 and not too close to the band
edges.

We can further simplify Eq. �20� in that we get rid of the
local mean-field vertex �. We utilize the Ward identity from
Eq. �14� connecting the one-electron self-energy 
 and the
two-particle irreducible vertex �. Using the stationarity
equation, Eq. �10a�, we easily obtain

�+− =
I
+

IG+
=

1

�+−�0�
, �21a�

�++ =

+�

G+�
=

Z+

�++�0�
, �21b�

where we denoted 
+�=�
+��� /�� ��=0, G+�=�G+��� /�� ��=0,
and Z+=
+� / �
+�−1�. With these relations and the local
Bethe-Salpeter equation, Eq. �13�, we can rewrite Eq. �20� to

����
MF =

e2

2�N2 �
kk�

	 �Gk
R�2v��k��̄+−�k + k��v��k���Gk�

R �2

��+−�0� − ��G+
�2���+−�0� − �+−�k + k���

− R	 Z+
2�Gk

R�2v��k��̄++�k + k��v��k���Gk�
R �2

��++�0� −Z+�G+
2���++�0� −Z+�++�k +k���


 ,

�22�

where we used an abbreviated notation

�G�
 = �
−�

� d�����
�EF − � − 
� � i0+�

, �23a�

�G�
2 
 = �

−�

� d�����
�EF − � − 
� � i0+�2 . �23b�

Representation �Eq. �22�� of the vertex corrections to the
electrical conductivity does not explicitly contain the

strength of elastic scatterings in the model. This strength is
beyond the self-energy of the one-electron propagators im-
plicitly comprised in the spatial fluctuations of the two-
particle bubble ��q�. A singular structure of the integrand in
momentum representation of the vertex corrections to the
Drude conductivity becomes transparent in Eq. �22�.

V. VERTEX CORRECTIONS TO THE ELECTRICAL
CONDUCTIVITY FROM HIGH SPATIAL

DIMENSIONS

To evaluate the vertex corrections to the mean-field elec-
trical conductivity, Eq. �20�, we resort to high spatial dimen-
sions where we can explicitly perform the convolutions over
momenta. We are interested only in the leading-order contri-
butions in the inverse spatial dimension 1 /d. The conductiv-
ity vanishes in the mean-field limit, d=�, where only local
quantities survive. The actual mean-field conductivity is due
to the velocity in a particular direction proportional to 1 /d
and hence can be treated only asymptotically for d→�. On a
hypercubic lattice we have v��k�=���k� /�k�= td−1/2 sin k�.
Inserting this result in the mean-field conductivity, Eq. �6�,
we obtain the Drude conductivity on a hypercubic
d-dimensional lattice to be

�0 =
e2t2

4�d
���G+�2
 − R�G+

2
� =
e2t2

2�d
I
2��G+G−�2
 . �24�

To evaluate the vertex corrections we represent the one-
and two-particle propagators so that we can separate the Car-
tesian components of momenta. We use the following inte-
gral representation for the one-electron propagator:

G�k,��� = − i�
0

�

due�iu���
�=1

d

exp	�
itu
�d

cos k�
 , �25�

where we assumed that I�+�0 and I�−�0 in order to keep
the integrals convergent. Here k� is the �th Cartesian com-
ponent of momentum k on a d-dimensional hypercubic lat-
tice.

The two-particle bubble can be represented in a similar
way. Performing the integration over momenta we obtain in
the leading asymptotic order for d→�

��q;�,��� = − �
0

�

du�
0

�

dveiu�eiv�� exp	 t2�u2 + v2�
4


�
�=1

d

exp	−
uvt2

2d
cos q�
 . �26�

For simplicity we assumed that both complex energies � and �� have positive imaginary parts. A generalization to different
imaginary parts is straightforward.

The above integral representations suffice to evaluate the leading order of the vertex corrections. We realize that the
denominator in the representation of the vertex corrections, Eq. �20�, does not contribute in the leading order for d→�. We
denote

J��
RR =

1

N2 �
kk�

�Gk
R�2v��k��̄RR�k + k��v��k���Gk�

R �2. �27�

We use the integral representation separating the Cartesian components of momenta. We then have
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J��
RR =

t2

d
�

0

�

da�
0

�

db�
0

�

da��
0

�

db��
0

�

du�
0

�

dvei�a+b+a�+b�+u+v��+ exp	−
t2�u2 + v2�

4 
sin k� sin k���
�=1

d

exp	 i�a + b�t
�d

cos k�

+
i�a� + b��t

�d
cos k�� −

uvt2

2d
cos�k� + k���
 .

The leading nonvanishing contribution from the summation over momenta is proportional to 1 /d. Performing the calculation
we obtain

J��
RR =

t4

8d2�
0

�

da�
0

�

db�
0

�

da��
0

�

db��
0

�

du�
0

�

dvei�a+b��+ exp	−
�a + b�2t2

4

ei�a�+b���+ exp	−

�a� + b��2t2

4

eiu�+ exp	u2t2

4



� eiv�+ exp	v2t2

4

uv . �28�

Using representation �Eq. �23�� we can rewrite J��
RR in a

simple form

J��
RR = −

t4

8d2 �G+G+
2�G+
2
�G+

2
 , �29a�

where each Green’s function G+ stands for the selection of
the imaginary part of the propagator, the retarded one. In the
case of the retarded and advanced propagators we then have

J��
RA = −

t4

8d2 �G+G−
2�G+
2
�G−

2
 . �29b�

We use these results to represent the vertex correction to the
electrical conductivity in high spatial dimensions. We obtain

�d� = −
e2t4

16�d2 ���G+�2
2��G+
2
�2�+−

2 − R��G+
2
4�++

2 �� .

�30�

With the aid of the Ward identity, Eq. �21�, we can further
simplify the expression for the leading contribution to the
electrical conductivity beyond the Drude formula in d spatial
dimensions

�d� = −
e2t4

16�d2	 ��G+�2
2��G+
2
�2

���G+�2
 − ��G+
�2�2

− R� Z+
2�G+

2
4

��G+
2
 − Z+�G+
2�2�
 . �31�

The sign of the vertex correction is negative. Although it
is only the leading asymptotic term, it determines the overall
sign of the vertex correction. The neglected higher-order
terms must be summed to infinite order so that the denomi-
nators on the right-hand side of Eq. �22� are recovered. The
higher-order terms then do not change the sign of the
leading-order vertex correction to the electrical conductivity.

VI. RESULTS

To reach numerical values for the vertex corrections to the
electrical conductivity we need the stationarity equation for

the self-energy, Eq. �10b�. This equation significantly simpli-
fies in the pure model at half filling with a symmetry be-
tween c and f electrons, it means if nc=1 /2, nf =1 /2, Ef =0,
and EF=U /2. We then obtain R
�0�=U /2 and the solution
for the local functions can be expressed in terms of a single
parameter

x = ��G+�2
 = �
−�

� d�����
�2 + I
+

2 � 0.

It is easy to find from Eq. �10b� that

I
+ = −�1

x
−

U2

4
, �32a�

IG+ = −�x�1 −
U2

4
x� , �32b�

�+− =
4

U2x2 = �++. �32c�

The stationarity equation for the parameter x reads

1 = �
−�

� d�����

x��2 −
U2

4
� + 1

� � 1

x��2 −
U2

4
� + 1� , �33�

where we again abbreviated the integral over energy
weighted by the density of energy states by angular brackets.

The two-electron bubble for zero momentum can be rep-
resented as follows:

�G+
2
 = − x�1 −

U2

2
x + 2�1 −

U2

4
x�x2� , �34a�

where we introduced variance of nonlocal fluctuations

x2 =
1

x2��
−�

� d�����
��2 + I
+

2�2 − x2� . �34b�

The Drude conductivity then is
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�0 =
e2

2�d
x�1 −

U2

4
x��1 + x2� �35�

and the vertex correction reads

�d� = −
e2

�d2

1 −
U2

4
x

U4 �1 −
U2

2
x + 2�1 −

U2

4
x�x2�2

� 	U2x − 4x2�1 −
U2

2
x + �1 −

U2

4
x�x2�
 . �36�

We set the energy scale t=1. Note that 0�x�4 /U2 for U2

�4��2
. The upper limit on the interaction strength U in the
above equations is imposed by the metal-insulator transition
at which x=0 and the density of the extended electrons at the
Fermi level vanishes.

The Drude conductivity in the weak-coupling limit �U
→0� diverges, that is, the resistivity vanishes as it should be
for the Fermi gas without impurity scatterings. The two pa-
rameters x and x2 behave in the weak-coupling limit x
�4 /U2−�2��0�2 and x2�2 /U2�2��0�2−1 and hence

�0 =
e2

�d

1

U2 . �37�

The vertex correction from Eq. �36� remains finite in the
limit U→0 even without external randomness in the atomic
energy levels. This fact is a consequence of the singular
structure of the two-particle bubbles x and x2 diverging as
U−2 in the weak-coupling limit, hence the same reason why
the Drude conductivity diverges for the Fermi gas. To derive
an explicit expression for the weak-coupling vertex correc-
tion, we had to expand the asymptotic solution for the pa-
rameters x and x2 up to the third order in d−1.

For the explicit calculation we used the semielliptic den-
sity of states �DOS� ����=2 /��1−�2. We choose the di-
mensionality parameter d=3 in our calculations. The Drude
conductivity is plotted in Fig. 3. It is compared to the DOS
of the mobile electrons at the Fermi energy. Coulomb inter-
action decreases both the DOS and the conductivity down to
the metal-insulator transition, where the self-energy diverges.
The vertex correction �� from Eq. �36� is plotted in Fig. 4.
The modulus of the vertex correction is not a monotonic
function and it reaches maximum at about Um�0.82. The
vertex correction is negative but is much smaller than the
Drude conductivity. Their ratio is plotted in Fig. 5. Only
close to the metal-insulator transition the vertex correction is
of order of the mean-field conductivity.

The Falicov-Kimball model away from half filling is more
complicated. First, we need two parameters to describe the
local quantities. They are

x = ��G+�2
 = �
−�

� d�����
�EF − R
 − ��2 + I
+

2

and

y = �
−�

� d������
�EF − R
 − ��2 + I
+

2 ,

where we subtract the Fermi energy and the self-energy from
their values in the electron-hole symmetric case nf
=1 /2, nc=1 /2. Explicit formulas are more involved and we
do not present them here. Second, as discussed in Ref. 22, a
nontrivial solution at zero temperature exists only for 1 /2
�n�3 /2. Outside this region the f-electron energy level is
either empty �n�1 /2� or fully filled �n�3 /2�. We plotted
the Drude conductivity and DOS in Fig. 6 for a total filling
n=0.7. The density of states at the Fermi energy is almost
constant within the interval 0�U�0.82, within which the
extended electrons scatter on f electrons. The extended elec-
trons go over to a Fermi gas in both limiting values of inter-
action, hence the Drude conductivity diverges at both ends.
The asymptotics is, however, different at the two ends. The
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ρF

FIG. 3. �Color online� Drude conductivity �0 �left scale� and
density of states at the Fermi energy �F �right scale� for the
electron-hole symmetric Falicov-Kimball model with semielliptic
density of states and d=3.
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FIG. 4. Vertex correction to the conductivity for the electron-
hole symmetric case.
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asymmetry between the two limiting interaction strengths is
demonstrated in Fig. 7, where we plotted the vertex correc-
tion to the Drude conductivity. It is two orders smaller than
the mean-field one. This is clearly seen from their ratio plot-
ted in Fig. 8. The ratio is no longer a monotonically increas-
ing function as in the electron-hole symmetric case but
reaches maximum at Um�0.48.

VII. CONCLUSIONS

We studied effects of elastic scatterings of mobile elec-
trons on either thermally equilibrated or frozen, randomly
distributed static impurities. We concentrated on quantum
coherence effects due to correlated back scatterings and its
impact on the electrical conductivity. We calculated vertex
corrections to the mean-field �Drude� conductivity. We used
a systematic expansion around the mean-field solution via
the asymptotic limit to high spatial dimensions. Our principal

finding is that elastic scatterings always lead to diminution of
the Drude conductivity. That is, vertex corrections due to
elastic scatterings have negative sign. The sign of the vertex
correction is determined by its leading high-dimensional
term, that is, by the numerators in Eq. �22�. The sign of the
vertex correction is not affected by the type of randomness in
the distribution of the scattering impurities. Coulomb inter-
action in the pure Falicov-Kimaball model has the same
�qualitative� effect on the electrical conductivity as variance
of fluctuations of the atomic potential in the disordered
Anderson model, it hinders diffusion.

We explicitly calculated only the leading high-
dimensional vertex correction to the Drude zero-temperature
conductivity in the disordered phase of the Falicov-Kimball
model without static randomness in atomic levels. We disre-
garded possible thermodynamic phases with a long-range or-
der in the static f electrons �chessboard structure at half fill-
ing� since there the model is insulating. We found that the
vertex correction in the metallic phase is quantitatively al-
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0 0.2 0.4 0.6 0.8 1
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U

FIG. 5. Ratio r= ���� /�0 for the electron-hole symmetric
case.
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FIG. 6. �Color online� Drude conductivity �left scale� and den-
sity of states �right scale� for filling n=0.7.
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FIG. 7. Vertex correction to the conductivity for filling
n=0.7.
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FIG. 8. Ratio r= ���� /�0 for filling n=0.7.
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most everywhere two orders smaller than the Drude term. It
is due to the fact that the Drude conductivity diverges in the
limit of the Fermi gas while the vertex correction asymptoti-
cally approaches a finite value when the interaction is
switched off. Only close to the metal-insulator transition in
the electron-hole symmetric case the vertex correction is of
order of the Drude one, however, they both vanish at the
transition point. The leading high-dimensional contribution
to the vertex correction of the mean-field conductivity is
quantitatively negligible. It is important only for determining
the sign of the vertex correction. To obtain a more realistic
values of the vertex corrections in low-dimensional systems,
one has to consider the full representation of the vertex cor-
rection from Eq. �22� containing the Cooper pole. Only then
we are able to include a sizable impact of spatial dimension-
ality.

Extension of our calculation of the electrical conductivity
to finite temperatures is straightforward via Eq. �2�. This
general representation is suitable for application of the Som-
merfeld expansion. The thermal corrections to the zero-
temperature conductivity in the metallic phase of the
Falicov-Kimball model would be of order T2 provided the
Sommerfeld expansion be regular. This seems, however, not
to be the case of the electrical conductivity. The regular as-
ymptotics can be modified by singularities in the derivatives

of the integrand �electron-hole Green’s function� on the
right-hand side of Eq. �2�. Explicit calculations of the tem-
perature dependence of the electrical conductivity and its
vertex corrections in the metallic phase of the Falicov-
Kimball will be performed elsewhere.

The method for evaluating vertex corrections to the mean-
field electrical conductivity via an asymptotic expansion in
high spatial dimensions is universal and is suitable for any
model with elastically scattered electrons. We can hence use
it to investigate whether the Coulomb interaction in FKM
can lead to suppression of diffusion in low-dimensional sys-
tems as well as to study an interplay between the Anderson
localization and Mott-Hubbard metal-insulator transition in
the disordered Falicov-Kimball model.
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